Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Int J Nanomedicine ; 19: 3071-3086, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562611

RESUMO

Introduction: The high mortality rate of malignant ovarian cancer is attributed to the absence of effective early diagnosis methods. The LHRH receptor is specifically overexpressed in most ovarian cancers, and the integrin αvß3 receptor is also overexpressed on the surface of ovarian cancer cells. In this study, we designed LHRH analogues (LHRHa)/RGD co-modified paclitaxel liposomes (LHRHa-RGD-LP-PTX) to target LHRH receptor-positive ovarian cancers more effectively and enhance the anti-ovarian cancer effects. Methods: LHRHa-RGD-LP-PTX liposomes were prepared using the thin film hydration method. The morphology, physicochemical properties, cellular uptake, and cell viability were assessed. Additionally, the cellular uptake mechanism of the modified liposomes was investigated using various endocytic inhibitors. The inhibitory effect of the formulations on tumor spheroids was observed under a microscope. The co-localization with lysosomes was visualized using confocal laser scanning microscopy (CLSM), and the in vivo tumor-targeting ability of the formulations was assessed using the IVIS fluorescent imaging system. Finally, the in vivo anti-tumor efficacy of the formulations was evaluated in the armpits of BALB/c nude mice. Results: The results indicated that LHRHa-RGD-LP-PTX significantly enhanced cellular uptake in A2780 cells, increased cytotoxicity, and hand a more potent inhibitory effect on tumor spheroids of A2780 cells. It also showed enhanced co-localization with endosomes or lysosome in A2780 cells, improved tumor-targeting capability, and demonstrated an enhanced anti-tumor effect in LHRHR-positive ovarian cancers. Conclusion: The designed LHRHa-RGD-LP-PTX liposomes significantly enhanced the tumor-targeting ability and therapeutic efficacy for LHRH receptor-positive ovarian cancers.


Assuntos
Neoplasias Ovarianas , Animais , Camundongos , Humanos , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Lipossomos/química , Receptores LHRH , Integrina alfaVbeta3 , Linhagem Celular Tumoral , Camundongos Nus , Paclitaxel/uso terapêutico , Oligopeptídeos/química
2.
Bioeng Transl Med ; 8(2): e10393, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36925685

RESUMO

Glioma is one of the most aggressive malignant diseases for human health. It is difficult to resect completely due to their invasiveness. The targeted delivery, as a noninvasive approach, is a major strategy for the development of treatments for brain tumors. Lactoferrin (Lf) receptors are over-expressed in both brain endothelial cells and glioma cells. Macromolecular Lf modified nanoparticles have been shown to enhance the brain targeting. Muscone is a "guide" drug that have been demonstrated to promote liposomes into the brain by modification. To further enhance the brain-targeting efficacy of Lf modified carriers, we designed that Lf and muscone dual-modified liposomes cross blood-brain barrier (BBB) and target to brain for enhanced docetaxel (DTX) brain delivery. The results showed that we successfully prepared Lf and muscone dual-modified liposomes (Lf-LP-Mu-DTX), the number of Lf molecules connected to the surface of per liposome was 28. Lf-LP-Mu-DTX increased uptake in both U87-MG cells and hCMEC/D3 cells, enhanced penetration of U87-MG tumor spheroid and in vitro BBB model, had better in vitro and in vivo anti-tumor effects. In conclusion, "guide" of muscone modification enhanced brain-targeting efficacy of Lf modified liposomes, Lf and muscone dual-modified docetaxel loaded liposomes present a potential brain-targeting drug delivery system for use in the future treatment of gliomas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...